首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   11篇
航天技术   1篇
航天   3篇
  2017年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2004年   2篇
  1997年   2篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
Boynton  W.V.  Feldman  W.C.  Mitrofanov  I.G.  Evans  L.G.  Reedy  R.C.  Squyres  S.W.  Starr  R.  Trombka  J.I.  d'Uston  C.  Arnold  J.R.  Englert  P.A.J.  Metzger  A.E.  Wänke  H.  Brückner  J.  Drake  D.M.  Shinohara  C.  Fellows  C.  Hamara  D.K.  Harshman  K.  Kerry  K.  Turner  C.  Ward  M.  Barthe  H.  Fuller  K.R.  Storms  S.A.  Thornton  G.W.  Longmire  J.L.  Litvak  M.L.  Ton'chev  A.K. 《Space Science Reviews》2004,110(1-2):37-83
The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.  相似文献   
12.
A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation. The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft, but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and a look at some early in-flight data.  相似文献   
13.
The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.  相似文献   
14.
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12° field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy.  相似文献   
15.
The determination of the composition of materials that make up comets is essential in trying to understand the origin of these primitive objects. The ices especially could be made in several different astrophysical settings including the solar nebula, protosatellite nebulae of the giant planets, and giant molecular clouds that predate the formation of the solar system. Each of these environments makes different ices with different composition. In order to understand the origin of comets, one needs to determine the composition of each of the ice phases. For example, it is of interest to know that comets contain carbon monoxide, CO, but it is much more important to know how much of it is a pure solid phase, is trapped in clathrate hydrates, or is adsorbed on amorphous water ice. In addition, knowledge of the isotopic composition of the constituents will help determine the process that formed the compounds. Finally, it is important to understand the bulk elemental composition of the nucleus. When these data are compared with solar abundances, they put strong constraints on the macro-scale processes that formed the comet. A differential scanning calorimeter (DSC) and an evolved gas analyzer (EGA) will make the necessary association between molecular constituents and their host phases. This combination of instruments takes a small (tens of mg) sample of the comet and slowly heats it in a sealed oven. As the temperature is raised, the DSC precisely measures the heat required, and delivers the gases to the EGA. Changes in the heat required to raise the temperature at a controlled rate are used to identify phase transitions, e.g., crystallization of amorphous ice or melting of hexagonal ice, and the EGA correlates the gases released with the phase transition. The EGA consists of two mass spectrometers run in tandem. The first mass spectrometer is a magnetic-sector ion-momentum analyzer (MAG), and the second is an electrostatic time-of-flight analyzer (TOF). The TOF acts as a detector for the MAG and serves to resolve ambiguities between fragments of similar mass such as CO and N2. Because most of the compounds of interest for the volatile ices are simple, a gas chromatograph is not needed and thus more integration time is available to determine isotopic ratios. A gamma-ray spectrometer (GRS) will determine the elemental abundances of the bulk cometary material by determining the flux of gamma rays produced from the interaction of the cometary material with cosmic ray produced neutrons. Because the gamma rays can penetrate a distance of several tens of centimeters a large volume of material is analyzed. The measured composition is, therefore, much more likely to be representative of the bulk comet than a very small sample that might have lost some of its volatiles. Making these measurements on a lander offers substantial advantages over trying to address similar objectives from an orbiter. For example, an orbiter instrument can determine the presence and isotopic composition of CO in the cometary coma, but only a lander can determine the phase(s) in which the CO is located and separately determine the isotopic composition of each reservoir of CO. The bulk composition of the nucleus might be constrained from separate orbiter analyses of dust and gas in the coma, but the result will be very model dependent, as the ratio of gas to dust in the comet will vary and will not necessarily be equal to the bulk value.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号